The Acid–Base Function in Non-aqueous Solution. Part IV.[†] Evidence for Entropy Production by Solvent Exclusion in an Aprotic Solvent

By D. M. Parbhoo and J. W. Bayles,* Chemistry Department, University of Natal, Durban, South Africa

The entropies and enthalpies of some proton-transfer reactions in chlorobenzene solution have been measured spectrophotometrically. The results of these systems and some others previously measured are discussed. As the proton-transfer affinity is increased, either by increasing the strength of the acid or of the base, we find that the entropy of reaction, normally ca. $-84 \text{ J K}^{-1} \text{ mol}^{-1}$, becomes strongly positive (ca. $+76 \text{ J K}^{-1} \text{ mol}^{-1}$). We suggest that this is because solvent is excluded from the neighbourhood of the hydrogen bond if the latter is strong and therefore short.

PROTON transfer between amines (B) and nitrophenols (AH) in chlorobenzene follows equation (1). Previous

$$\mathbf{B} + \mathbf{A}\mathbf{H} = \mathbf{B}^{+}\mathbf{H}\mathbf{A}^{-} \tag{1}$$

evidence ¹ has led to the conclusion that in chlorobenzene the ΔH° and ΔS° values for this type of reaction do not contain contributions from solvation changes. Pearson and Vogelsong ² have found evidence of specific solvation of non-bridging protons in ion pairs of the form B⁺HA⁻ by considering the effects accompanying change of solvent and the addition of small amounts of a hydroxylic solvent and of salts having a cation in common with the reaction mixture.

We have now measured systems where the acid-base pair is stronger than previously and where there is steric hindrance around the reaction site. In these circumstances we find that there is a striking transition towards more positive entropies and less negative enthalpies of reaction owing, we suggest, to solvent exclusion when B^+HA^- is formed from B and AH.

EXPERIMENTAL

Materials.—Chlorobenzene was purified as previously described.³ 2,4-Dinitrophenol, 2,6-dinitrophenol, and picric acid were recrystallised from aqueous ethanol, dried *in vacuo* over KOH for several days, and stored in a desiccator over P_2O_5 . They had m.p. 112.5 °C (lit., 112.6 °C), 62.0 °C (lit., 62.2 °C), and 122 °C (lit., 122.0 °C) respectively.

All the amines were dried (KOH), then fractionated, and the middle fraction collected. They had b.p.s as follows: 2-methoxypyridine, 141.5 °C; 2-methylpyridine, 129 °C (lit., 129 °C); n-butylamine, 77.5 °C (lit., 77.7 °C), and trin-butylamine 213 °C (lit., 214 °C). The purity of these amines was checked by g.l.c. with 10-15% Lubrol M.O. or Carbowax on Celite as stationary phase.

Method.—A Zeiss PMQ II spectrophotometer provided with a water-jacketed cell holder and stirrer was used.

A photometric titration technique was employed with two 5 cm³ Metrohm piston burettes to deliver solution into one of the two matched Vitreosil optical cells (path-length 2 cm). The piston burette and the titration cell were terminated by neoprene septa attached by brass fittings. Stainless steel needles were heat-sealed to the ends of the Polythene delivery tubes. The steel needles at the two ends of the Polythene tubing were pierced through the septa and displaced air escaped from the titration cell through a further fine-bore needle. In this way losses

† Part III, J. W. Bayles and B. Evans, J. Chem. Soc., 1961, 6984.

through evaporation at high optical cell temperatures were made insignificant.

Water was pumped from an insulated water-bath through the cell holder. The water-bath temperature was controlled within $0.1 \,^{\circ}\text{C}$ of the set temperature between *ca*. 17 and 60 $^{\circ}\text{C}$. A correction was applied for the difference between the cell and bath temperatures.

RESULTS

Absorption Spectra.—The spectra of acidic and basic solutions of 2,4-dinitrophenol in chlorobenzene have been discussed.³ Ionised picric acid has a similar spectrum to that of ionised 2,4-dinitrophenol with an intense absorption peak near 360 nm and a shoulder having two-thirds of this intensity near 410 nm. This shoulder is absent from the spectra of ionised 2,6-dinitrophenol.

The molar absorbances of the un-ionised indicators and the AHB complexes at 410 nm are given in Table 1 together

TABLE 1

Characteristics of the absorption spectra of various indicators alone and in the presence of an excess of various amines

Indicator	Amine	$\frac{\lambda_{max.}}{nm}$	$\frac{\varepsilon_{max.}}{m^2 \text{ mol}^{-1}}$	$\frac{\epsilon_{410}}{\mathrm{m}^2 \mathrm{\ mol}^{-1}}$
Picric acid	Nil	410		10.3
	2-Methoxy pyridine	347	1490	740
	2-Methyl- pyridine	350	1517	740
	Mono-n- butylamine	360	1700	830
	Dibenzylamine	350	1590	840
	Tribenzylamine	350	1700	820 *
2,4-Dinitrophenol	Nil	410		2.8
	Mono-n- butylamine	355	1760	960
2,6-Dinitrophenol	Nil	443		0·0 †
· •	Mono-n- butylamine	445	970	910 †

The $\boldsymbol{\epsilon}$ values given here in SI units are one-tenth of the numerical values in old units.

* $\lambda = 403$ nm. $\dagger \lambda = 443$ nm.

with the wavelengths of the maximum absorption of the AHB complexes and their corresponding molar absorbances which are reproducible to between $\frac{1}{2}$ and 1%.

Checks of the equilibrium type ³ required by reaction (1) were made for all the systems in Table 2. In all cases the plots of m_{AHB} against $m_{AH}m_B$ were found to be linear to the same precision as previously reported.

¹ J. W. Bayles and A. F. Taylor, J. Chem. Soc., 1961, 417.

² R. G. Pearson and D. C. Vogelsong, J. Amer. Chem. Soc., 1958, **80**, 1038.

³ J. W. Bayles and A. Chetwyn, J. Chem. Soc., 1958, 2328.

	,	Table 2				Table	2 (Contin	ued)	
Experiment	al results fo	r amine–ac	id systems	in chloro-	10 ⁵ m _{AH}	$10^2 m_{\rm B}$	t/°C	D_{410}	$\log_{10} K_x$
1		benzene	ia ogotomo		6.47	2.90	26.3	0.365	5.840
		Denizente					31.0	0.335	5.685
i) 2-Methoxyp	yridine + pic	cric acid in	a 2-cm cuve	ette			35.9	0.302	5.546
$10^5 m_{AH}$	$10^{2}m_{\rm B}$	t/°C	D_{410}	$\log_{10} K_x$			40.5	0.275	5.415
6.78	0.990	26.3	0.286	2.490			45.1	0.247	5.297
		31.0	0.247	$2 \cdot 407$	6.19	4 ·16	26.3	0.482	5.830
		$35 \cdot 9$	0.210	2.318	015	H 10	31.0	0.445	5.696
		40.5	0.178	2.230			35.9	0.400	5.543
		45 ·1	0.153	$2 \cdot 151$			40.5	0.358	5.407
6.47	1.89	$26 \cdot 3$	0.430	2.510			$45 \cdot 1$	0.312	5.269
• • •		31.0	0.373	3.411	F 00	6.00	00.0	0.000	5 0 50
		$35 \cdot 9$	0.324	2.321	5.69	6.39	$26 \cdot 3 \\ 31 \cdot 0$	0.620 0.568	5·850 5·699
		40.5	0.278	2.228			35.9	0.503 0.512	5.545
		45.1	0.243	2.151			40.5	0.460	5.408
6.19	2.71	26.3	0.518	2.541			45 ·1	0.413	5.287
010	2	31·0	0.460	2.443					
		35.8	0.402	$2 \cdot 343$	7.67	2.90	26.3	0.378	5.801
		40.5	0.320	$2 \cdot 248$			$31.0 \\ 35.9$	0·348 0·320	$5.640 \\ 5.508$
		$45 \cdot 1$	0.300	2.149			35.9 40·5	0.320	$5.308 \\ 5.364$
8.19	0.605	26.3	0.230	2.472			45.2	0.258	5.243
0.19	0.005	$\frac{20.3}{31.0}$	0.230	2.388					
		35.8	0.168	2.300 2.310	7.03	5.32	26.3	0.607	5.801
		40.5	0.145	2.235			31.0	0.557	5.654
		$45 \cdot 1$	0.123	$2 \cdot 153$			35.9	0.505	5.510
F 01	1 54	04.0	0.440	0.401			$40.5 \\ 45.1$	$0.455 \\ 0.396$	$5.378 \\ 5.224$
7.81	1.54	$26 \cdot 3 \\ 31 \cdot 0$	0·440 0·380	$2 \cdot 481 \\ 2 \cdot 388$			40.1	0.390	0.224
		$31.0 \\ 35.9$	0.330 0.330	2.388	6.49	7.37	26.3	0.710	5.789
		40.5	0.280	2.210	0 20		31.0	0.650	5.636
		$45 \cdot 1$	0.248	2.144			35.9	0.585	5.480
				0 400			40.5	0.529	5.352
7.47	2.39	26·3	$0.575 \\ 0.505$	$2 \cdot 523 \\ 2 \cdot 423$			45.1	0.475	5.231
		$31.0 \\ 35.9$	0.303	$2.423 \\ 2.327$	0.05	9.07	45 1	0 209	5 940
		40.5	0.380	2.321 2.232	6.62	3.87	45·1 40·5	$0.302 \\ 0.340$	$5.240 \\ 5.366$
		45.1	0.330	2.146			35.8	0.380	5.500
							31.0	0.417	5.630
4.78	3.26	26.3	0.396	2.451			26.3	0.456	5.777
		$31.0 \\ 35.8$	$0.350 \\ 0.305$	$2 \cdot 35 \\ 2 \cdot 249$					10
		40.5	0.303 0.263	$2.249 \\ 2.149$	6.47	5.38	$26 \cdot 3 \\ 31 \cdot 0$	$0.570 \\ 0.530$	$5.749 \\ 5.635$
		45.1	0.225	2.050			31.0	0.530	5.492
							40.5	0.429	5.361
4.59	3.92	26.3	0.420	2.467			45.1	0.376	5.220
		$31.0 \\ 35.9$	0.373	2.359					
		30.9 40.5	$0.326 \\ 0.285$	$2 \cdot 251 \\ 2 \cdot 154$	6.24	4.71	26.3	0.528	5.817
		45.1	0.250	2.066			31.0	0.483	5.670
							$35 \cdot 8 \\ 40 \cdot 5$	0·438 0·390	$5.532 \\ 5.390$
6.56	$2 \cdot 96$	26.2	0.540	2.488			40.5	0.348	5.268
		31.0	0.472	2.379					
		$35 \cdot 8 \\ 40 \cdot 5$	$0.410 \\ 0.355$	$2 \cdot 276 \\ 2 \cdot 180$					
		40·5 45·1	0.308	2.091	(iii) Tribenzyla	mine + picrie	c acid in a	l-cm cuvette	*
					$10^{4}m_{AH}$	$10^{4}m_{\rm B}$	t/°C	D_{403}	$\log_{10} K_x$
6.28	3.78	45.1	0.354	2.103	0.791	0.734	20.5	0.116	4.537
		40.5	0.398	2.183			$21 \cdot 5$	0.112	4.534
		35.9	0.458	2.286			26.5	0.086	4.371
		$31.0 \\ 26.3$	$0.520 \\ 0.580$	$2.390 \\ 2.490$			35·3 47·9	0·064 0·038	$4 \cdot 204 \\ 3 \cdot 926$
		205	0000	2 400			47.9 59.8	0.038	3.730
ii) 2-Methylpy	ridine + pic	ric acid in a	2-cm cuvet	tte				0 0 2 0	
10 ⁵ m _{AH}	$10^2 m_{\rm B}$	t/°C	D_{410}	$\log_{10} K_x$	$2 \cdot 02$	$2 \cdot 26$	17.5	0.573	4.549
7.30	3.12	26.3	0.396	5.793			21.0	0.528	4.479
-		31.0	0.365	5.643			27.0	0.415	4.290
		35.9	0.334	5.509			$35 \cdot 3 \\ 47 \cdot 9$	$\begin{array}{c} 0.345 \\ 0.228 \end{array}$	$4.164 \\ 3.908$
		$40.5 \\ 45.1$	$0.298 \\ 0.272$	$5.362 \\ 5.261$			59.8	0.161	3.715
	4.48	26.3	0.520	5.760	1.10	1.78	20.5	0.306	4.575
6.98			0 400	F 091			75.0	11.755	4.436
6.98		31.0	0.480	5.631			25.0	0.255	
6.98		$31.0 \\ 35.8 \\ 40.5$	$0.480 \\ 0.432 \\ 0.385$	5·481 5·341			$35.3 \\ 48.0$	$0.235 \\ 0.190 \\ 0.125$	4·241 3·994

TABLE 2 (Continued)								
(iv) Dibenzylamine + picric acid in a l-cm cuvette *								
$10^4 m_{AH}$	$10^{4}m_{\rm B}$	t/°C	D_{410}	$\log_{10} K_x$				
1.10	2.25	18.0	0.748	5.451				
		21.3	0.723	5.376				
		$35.0 \\ 48.5$	0·676 0·588	$5.265 \\ 5.053$				
		48·5 59·0	0.530	4.926				
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
0.437	0.424	22.0	0.173	5·563 5·543				
		$23 \cdot 0 \\ 26 \cdot 0$	0·170 0·163	5.497				
		35.0	0.147	5.393				
		49.4	0.111	5.143				
		58.8	0.092	5.001				
0.887	1.32	$22 \cdot 0$	0.546	5.571				
		26.0	0.532	5.528				
		35.0	0.490	5.396				
		49∙4 58∙8	$0.431 \\ 0.376$	$5.225 \\ 5.065$				
		99.9	0.370	9.009				
0.318	0.581	19.0	0.167	5.593				
		22.0	0.159	$5.531 \\ 5.363$				
		35·0 49·4	$0.136 \\ 0.106$	5.137				
		59.0	0.086	4.976				
			0.410					
0.896	0.786	$22 \cdot 0 \\ 23 \cdot 0$	0·418 0·400	$5.593 \\ 5.520$				
		$\frac{23.0}{35.0}$	0.371	5.425				
		48.6	0.320	5.248				
		59 ·0	0.278	5.101				
(v) Mono- n -but	ylamine + p	icric acid ir	n a 1 cm cuv	ette				
$10^{4}m_{AH}$	$10^{4}m_{\rm B}$	t/°C	D_{410}	$\log_{10} K_x$				
$2 \cdot 12$	2.39	$25 \cdot 0$	1.17	5.084				
		26.5	1.17	5.086				
		$30.5 \\ 36.0$	$1.10 \\ 1.13$	5·000 5·046				
		36·5	1.13	5.026				
		49.0	1.09	5.009				
		57.5	1.04	4.952				
2.63	1.97	19.0	1.25	5.192				
2 00		19.5	1.22	5.151				
		21.0	1.11	5.035				
		33.5	1·08 1·08	4 ∙983 4∙994				
		$42 \cdot 3 \\ 63 \cdot 3$	1.09	5.037				
		73.0	1.01	4.935				
0 591	0.904	90.5	0.142	5.183				
0.531	0.394	$20.5 \\ 26.0$	0.107	4.958				
		36.0	0.113	5.007				
		49 ·0	0.103	4.947				
		60.5	0.084	4.828				
(vi) Mono-n-butylamine + 2,4-dinitrophenol in a l-cm cuvette								
10 ⁵ m _{AH}	$10^{2}m_{\rm B}$	t/°C	D_{410}	$\log_{10} K_x$				
6.32	1.30	19.0	0.52	3.375				
		20.5	0.50	3.305				
		$30.0 \\ 35.5$	$\begin{array}{c} 0{\cdot}43\\ 0{\cdot}37 \end{array}$	$3.102 \\ 2.943$				
		47·0	0.25	2.630				
		57.0	0.16	2.354				
9.73	2.15	19.0	0.91	3.482				
9.19	2.10	20.5	0.91	$3.482 \\ 3.452$				
		3 0.0	0.77	3.103				
		35.5	0.70	2.962				
		47·0	0·56 0·41	$2.718 \\ 2.464$				
		57 ·0	0.41					
11.1	1.39	18.0	0.95	3.434				
		$22.0 \\ 24.5$	0·85 0·79	$3.233 \\ 3.130$				
		24·5 47·0	$0.79 \\ 0.45$	2.622				
		57.0	0.28	2.324				

	TABLE	2 (Contin	nued)	
$10^{5}m_{AH}$	$10^{2}m_{\rm B}$	t/°C	D_{410}	$\log_{10} K_x$
		21.1	0.678	3.239
9.66	1.02		0.668	3·218
		24·0		$3.218 \\ 3.077$
		29.5	0.587	
		30.0	0.572	$3.052 \\ 2.583$
		47.1	0.305	
		57 ·0	0.180	2.286
(vii) Mono n-bi	itylamine + 2	2,6-dinitrop	ohenol in a l	-cm cuvette
$10^4 m_{AH}$	$10^{4}m_{\rm B}$	t/°C	$D_{442-445}$	$\log_{10} K_x$
1.91	1.98	17.0	0.612	4.479
101	- •••	25.0	0.391	4.157
		27.5	0.341	4.073
		36.0	0.181	3.719
		50.0	0.053	3.131
		57.5	0.015	2.568
1.91	2.97	19.0	0.670	4.315
		23.0	0.642	4.284
		26.0	0.571	4.199
		35.0	0.310	3.817
		36.5	0.283	3.766
		50.0	0.077	3.123
		57.5	0.028	2.668
2.86	1.98	18.5	0.696	4.341
		19.5	0.749	4.402
		20.5	0.733	4.385
		$23 \cdot 5$	0.665	4.308
		35.0	0.320	3.834
		36.5	0.321	3.836
		50.0	0.138	3.400
		57.5	0.098	$3 \cdot 239$
0.04	1.00	17 5	0.001	4 900
3.24	1.98	17.5	0.801	4.386
		22.0	0.647	4.216
		36.5	0.291	3.721
		50.0	0.092	3.150
		57.5	0.042	2.794
2.16	1.98	20.0	0.592	4.378
		21.5	0.542	4.312
		23.0	0.494	4.246
		24.5	0.458	4.195
		35.0	0.220	3.763
		48.0	0.071	3.210
		58.0	0.02	2.642
	* See for	tnote to T	able 3	

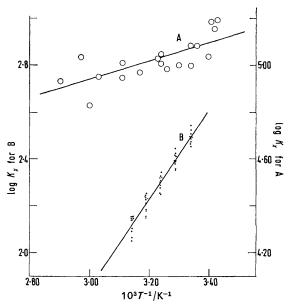
* See footnote to Table 3.

For each molality of amine and indicator the absorbancy was measured over the temperature range shown in Table 2. The molality of AHB was calculated by the method described by Bayles and Taylor.¹ The equilibrium constants were expressed as mole-fractional dimensionless quantities K_x by multiplying the molal constant by 1000/M, M being the molar mass of the solvent. Over the experimental range of concentrations and temperature, log K_x is found to be linear function of T^{-1} . Therefore ΔH° is constant and $\Delta C_p^{\circ} = ca. 0$.

The thermodynamic quantities were calculated by computer from K_x and from the variation of log K_x with reciprocal temperature by use of the method of least squares. To calculate ΔG° and other thermodynamic quantities we have used R = 8.31 J mol⁻¹ K⁻¹.

The results are shown in Table 3 where the precisions are also shown as probable errors. The magnitude of the experimental scatter in terms of the quoted probable errors can also be seen by comparing the Figure with the tabulated results. In this respect the two systems plotted represent the extremes of errors.

	•	1			
АН	В	$\mathrm{p}K_{\mathrm{a}}$	$\frac{\Delta G^{\circ}_{298}}{\text{kJ mol}^{-1}}$	$\frac{\Delta H^{\circ}_{298}}{\text{kJ mol}^{-1}}$	$\frac{\Delta S^{\circ}_{298}}{\text{J} \text{ mol}^{-1} \text{ K}^{-1}}$
Group A					
Picric acid Picric acid Picric acid Picric acid Picric acid	2-Methoxypyridine 2-Methylpyridine Tribenzylamine * Dibenzylamine * Mono-n-butylamine	3·06 5·93 10·59	$\begin{array}{r} -14{\cdot}40\pm0{\cdot}04\\ -33{\cdot}41\pm0{\cdot}04\\ -25{\cdot}31\pm0{\cdot}04\\ -31{\cdot}44\pm0{\cdot}08\\ -28{\cdot}95\pm0{\cdot}12\end{array}$	$\begin{array}{c} -38 \pm 0.8 \\ -53 \pm 2 \\ -37.7 \pm 0.8 \\ -25.8 \pm 1 \\ -7.1 \pm 2.6 \end{array}$	$egin{array}{c} -71\pm3\\ -67\pm8\\ -42\pm3\\ +20\pm4\\ +73\pm8\cdot8 \end{array}$
Group B					
2,4-Dinitrophenol	Mono-n-butylamine	3.96	-18.38 + 0.04	-49.5 + 1	-105 + 4
2,6-Dinitrophenol	Mono-n-butylamine	3.71	$-23 \cdot 68 \stackrel{-}{\pm} 0 \cdot 08$	$-$ 75·6 \pm 2·0	$-174\stackrel{-}{\pm}7\cdot2$
-	2		-28.95 ± 0.12	-7.1 ± 2.6	$+73\pm8.8$
Picric acid	Mono-n-butylamine Mono-n-butylamine	3·71 0·38	$-23.68 \pm 0.08 \ -28.95 \pm 0.12$	$-75.6 \pm 2.0 \ -7.1 \pm 2.6$	


TABLE 3

Thermodynamic functions for proton-transfer reactions between amines and indicators

* N. R. McFarlane, M.Sc. Thesis, University College of South Wales and Monmouthshire, Cardiff, 1961.

DISCUSSION

In unpublished work Chetwyn⁴ found that the picric acid-n-butylamine and picric acid-dibenzylamine systems had high positive entropies and small negative enthalpies of reaction. We were unable to suggest a satisfactory explanation for this remarkable effect since

Graphs of log K_x against 10^3T^{-1} for the systems A, mono-nbutylamine-picric acid and B, 2-methoxypyridine-picric acid in chlorobenzene

it had been shown ⁵ that picric acid is not an associated solute in chlorobenzene. To explain the effect, it is necessary to account for a swing of ca. 147 J K⁻¹ mol⁻¹ positively for these reactions in comparison with the more usual values obtained. It is particularly difficult to explain how a reaction in which two molecules react to produce one can give rise to a positive entropy of reaction.

We have therefore studied the effect on ΔS° and ΔH° of two kinds of alteration in the molecular situation. These are (a) change of proton affinity of the base (b) change of the acid strength of the acid, in the acid-base pair as predicted by electronic theory. In previous Parts it has been shown that the normal electronic theories of strength apply satisfactorily in chlorobenzene.

The effect occurs only when one of the stronger bases reacts with one of the stronger acids. The resultant value of ΔG° becomes, of course, an equivocal measure of the proton affinity between the reactants when compared with the values for systems not showing this effect. It is not possible for, e.g., rotational freedom in the ion pair to account for the amount of entropy involved but, as the solutes are solvated before reaction, exclusion of solvent from the vicinity of the hydrogen bond could provide an explanation. Clearly any solvent molecule attached to N or to NH⁺ will be excluded whatever reactant pair is involved. However, there will be other solvent molecules relatively loosely attached to the reactants, and these solvent molecules, though usually retained after reaction, could be excluded if the reaction bond were abnormally strong and hence presumably short.

Table 3 presents two groupings of the acid-base pairs which have been selected for study to present the gradations in properties required by (a) and (b) above. Groups A and B each contain a fixed acid and a sequence of bases of strengths which would increase according to electronic theories. Except for the benzylamines for which no pK_a value is available, the pK_a values in water for the amines of Group A do in fact increase. In this group, the positive entropies are found for the systems having the bases of highest strength. Moreover it was found that the monobenzylamine-picric acid system, which should on electronic grounds be expected to be the strongest acid-base pair involving picric acid and a benzylamine, yielded insoluble precipitates making it impossible to determine the equilibrium position. This observation supports the view that the positive entropies of reaction are connected with solvent exclusion following hydrogen-bond formation.

Group B demonstrates that with a fixed base and a sequence of acids of increasing strength, the positive ΔS° values again occur for the system with the highest proton affinity.

The effect, which may be termed ' entropy production ⁴ A. Chetwyn, Ph.D. Thesis, University College, Cardiff, 1958.

⁵ J. W. Bayles and A. Chetwyn, *Chem. and Ind.*, 1958, 1204.

by solvent exclusion ' is therefore not a property peculiar to any one acid or base, but is generated in the formation of a hydrogen bond. Therefore when comparisons are made between the strengths of acid-base systems in non-aqueous solution where ion pairs are the result of proton transfer, one must be very careful to ensure that the systems react either all with or all without solvent exclusion. The implications of this and other effects on the definition of acid-base scales in non-aqueous solvents will be examined in a future paper.

We thank the South African Council for Scientific and Industrial Research for a scholarship (to D. M. P.).

[0/1431 Received, 19th August, 1970]